Introduction to CCD Astronomy

Jon Rees Observational Astronomy Workshop

Astronomy By Eye

- Unaided limiting magnitude ~6
- Telescopes brought step-change
- But no direct record of observations, still limited on faint objects, optical illusions

July 6, 1890 12 39-1. 8.7. Preceding and a this about is mighter than fullning and. Bright while apolo Broad helt of very cost dore odlar 0000 0 Yan While bello Borad diffuse. Equatorial gone bentral strike last year faint, and dull in color gilie edge Very semarkable lask and thouts, almost so tark as chadnos & satillitis, and about he the signi similar afor Somewhat brighting has just gone of. Sketch & Jupilin. Secong 4 and sometimes 5. The red aport gone of m the ligh. Shetch made a little earlier by mr. Campbell. Power almes 3 50 (houge prochine)

Drawing of Jupiter by James Keeler, 1890 (Credit: Lick **Observatory Historical Collections**)

Astronomy By Eye

- Unaided limiting magnitude ~6
- Telescopes brought step-change
- But still difficult to deal with faint objects, optical illusions

Drawing of 'canals' on Mars by Percival Lowell, 1905 (Credit: Lowell Observatory)

Photographic Plates

- Stable, wide-field observations
- Excellent for large area surveys, e.g. Palomar, Schmidt
- Beyond visual wavelengths
- By exposing for long time faint objects

Top: Negative (left) and Positive (right) prints of a 135 min exposure of the Pleiades, Dec 1898 Bottom: Photographic plate showing 4 hr exposure of an edge-on galaxy, Nov 1899 (Credit: Lick Observatory Historical Collections)

Photomultiplier Tubes Focusing electrodes

- Photons hit cathode, eject electrons, secondary electrodes amplify the effect
- Converts incident photons to electrical signal
- Linear response Accurate calibration of photometry
- But only single element

The First CCD Observation

- Created by Bell Labs in 1969.
- First used for Astronomy in 1976 by JPL/UoA

1976 Observation of Uranus from the UoA 61-inch Telescope (Janesick & Blouke, 1987)

CCD Operation

- Doped semiconductor, photons liberate electrons
- Grid of electrodes -> potential wells (pixels)
- Voltages cycled to move charge to readout amplifiers
- Conversion from analogue voltage to digital counts - ADC
- Gain is set by electronics, e/ADU

Cross section of 3-phase CCD & charge transfer diagram (Dawiec 2011)

File Format (FITS)

- Data stored in 'FITS' files
- FITS files start with ascii headers contain useful information
- Data are stored in arrays after headers
- Many tools exist to read FITS e.g. DS9, IRAF, python routines

	FIT	'S Header for Skyflat
Keyword	Value	Comment
SIMPLE	Т	NORMAL FITS IMAGE
BITPIX	16	DATA PRECISION
NAXIS	2	NUMBER OF IMAGE DIMENSIONS
NAXIS1	1056	NUMBER OF COLUMNS
NAXIS2	1024	NUMBER OF ROWS
CRVAL1U	2048	COLUMN ORIGIN
CRVAL2U	2048	ROW ORIGIN
CDELTIU	-2	COLUMN CHANGE PER PIXEL
CDELT2U	-2	ROW CHANGE PER PIXEL
OBSNUM	1041	OBSERVATION NUMBER
IDNUM	2	IMAGE ID
JGEOM	0	UCAM READOUT GEOMETRY
DGEOM	0	DESCRAMBLE GEOMETRY
AMPSROW	1	AMPLIFIERS PER ROW
AMPSCOL	1	AMPLIFIERS PER COLUMN
OBSTYPE	'OBJECT'	IMAGE TYPE
EXPTIME	3	Exp time (not counting shutter error)
BSCALE	1	DATA SCALE FACTOR
BZERO	32768	DATA ZERO POINT
COMMENT		Real Value = FITS*BSCALE+BZERO
PROGRAM	'NEWCAM'	New Lick Camera
VERSION	'nickel_direct'	Data acquisition version
TSEC	1592624447	CLOCK TICK - SECONDS
TUSEC	656880	CLOCK TICK - MICROSECONDS
DATE	'2020-06-20T03:40:47.65'	UT of CCD readout & descramble
DATASEC	'[1:1024,1:1024]' / IRAF	NOAO-style data section
COMMENT		End of cards hard-coded in fits_cards
COMMENT		Begin of cards from other times
CSYER2	0.01666669920087	systematic error along direction of WCS a
CSYER1	0.01666669920087	systematic error along direction of WCS a
CRDER2	5.139999848325E-05	random error along direction of WCS axis
CRDER1	5.139999848325E-05	random error along direction of WCS axis
CD2_2	-0.0001027239995892	CTM element i_j from FITS axis j to WCS a
CD2_1	3.946270226152E-06	CTM element i_j from FITS axis j to WCS a
CD1_2	-3.946270226152E-06	CTM element i_j from FITS axis j to WCS a
CD1_1	-0.0001027239995892	<pre>CTM element i_j from FITS axis j to WCS a</pre>

Detector Characteristics

Sensitivity (QE)

- Quantum Efficiency ability of detector to detect photons
- QE is a function of wavelength
- Detectors can be targeted at different wavelength regimes

Quantum efficiency for Nickel CCD2 (Credit: UCO/Lick)

Sensitivity (QE)

- Quantum Efficiency ability of detector to detect photons
- QE is a function of wavelength
- Detectors can be targeted at different wavelength regimes

Photon absorption length in silicon (Reicke 1994)

- Plate scale relation between detector pixels and physical size on sky
- Holdover from photographic plates
- For CCDs a convenient unit is arcsec/pixel
- 0.18"/pixel for Nickel CCD

- Plate scale relation between detector pixels and physical size on sky
- Holdover from photographic plates
- For CCDs a convenient unit is arcsec/pixel
- 0.18"/pixel for Nickel CCD

- Can 'bin' groups of pixels together
- Decreases resolution, but improves readout time and readout noise
- Imaging can bin with fewer downsides (sometimes)
- For spectroscopy, generally no binning

Binning Options	Combined pixels on the CCD Chip						
None							
2 x 2 (4 pixels = 1)							
3 x 3 (9 pixels = 1)							

- Can 'bin' groups of pixels together
- Decreases resolution, but improves readout time and readout noise
- Imaging can bin with fewer downsides (sometimes)
- For spectroscopy, generally no binning

- Can 'bin' groups of pixels together
- Decreases resolution, but improves readout time and readout noise
- Imaging can bin with fewer downsides (sometimes)
- For spectroscopy, generally no binning

Windowing

- Can window down the detector
- Read out a subset of pixels
- Drastically improve readout time, limit Field of View
- Need to match calibrations to windowed data

Windowing

- Can window down the detector
- Read out a subset of pixels
- Drastically improve readout time, limit Field of View
- Need to match calibrations to windowed data

- If detector was perfect, double number of photons -> double counts
- Only true up to a certain count limit
- At high counts, detectors may become non-linear

Linearity

- If detector was perfect, double number of photons -> double counts
- Only true up to a certain count limit
- At high counts, detectors may become non-linear

Linearity

Saturation

- When electrons reach limit of ADC, no more can be counted
- Bright objects can cause electrons to exceed full well depth pixels
- Electrons will start to fill neighbouring pixels causing bleed trails

Electron bleed trails from saturated stars (Credit:ESO)

Read Noise

- Conversion from analog to digital signal introduces noise
- Electronics also introduce spurious electrons throughout readout
- Can often decrease read noise by using slower read out modes

Thermal Noise/Dark Current

- Thermal energy can liberate electrons
- These are indistinguishable from electrons liberated by photons
- Solution cool the detector. Generally use liquid nitrogen
- Dark current negligible at these temperatures

Calibration Files

• Zero second exposure

- But signal isn't zero?
- We apply a constant voltage to the detector
- Positive base signal prevent negative values
- Overscan vs Bias frame

Bias

• Zero second exposure

- But signal isn't zero?
- We apply a constant voltage to the detector
- Positive base signal prevent negative values
- Overscan vs Bias frame

Bias

Flat-Field

- Uniform illumination source
- Dome flats (easy) vs twilight sky flats (better)
- Shows non-uniformity of detector, along with e.g. dust, filter imperfections

Flat-Field

- Uniform illumination source
- Dome flats (easy) vs twilight sky flats (better)
- Shows non-uniformity of detector, along with e.g. dust, filter imperfections

Flat-Field

- Uniform illumination source
- Dome flats (easy) vs twilight sky flats (better)
- Shows non-uniformity of detector, along with e.g. dust, filter imperfections

Fringing

- Interference due to photons reflecting within CCD
- Occurs longwards of ~700nm
- Largely due to atmospheric OH
 cannot correct with flats
- But largely stable with time can use library frames to correct

Example Z-band fringe frame for INT-WFC

Cosmic Rays

• Blue -Relatively few events

• Red - Thicker chip, many cosmic ray events

Spectroscopy

- Same ideas apply to spectroscopy
- Bias/Flat fields
- Also arc lamps wavelength calibration

3288	55

70	7875 10158	3 12463	14746	17029	19334	21616
					and the second	
				- Andrew Concerned and the other		Mar Marana
			and the second			

7430	13865	20363	26798	33297	39732	46167	52665	59100	
									-60000
									-40000
									-20000
	A	~							F

Arcs

Conclusions

- CCDs are great!
- CCDs are not perfect
- Beware of non-linearity/saturation
- Remember calibration files

Conclusions

- Calibration Files:
 - Bias (Bias Voltage)
 - Flat Field (Non-uniform response)
 - Arcs (Wavelength Calibration)
 - Fringe Frame, Standard Star

- We have photons now what?
- Brightness or flux of star easy to measure
- Variation with time lightcurves
- Using filters can get you colour information

Extras: Photometry

Credit: S. Littlefair (Sheffield University)

Photometry: Filter Systems

Photometry: Aperture Photometry

- Aperture photometry is most common
- Sum up pixels in an aperture centered on the star
- But what about sky brightness?
- Use annulus near star devoid of other sources
- Subtract average (median) sky from target star

Photometry: Centroiding/Sky

- But what if we have a lot of stars?
- Automate identifying stars
- Measure sky background, look for things a few sigma above background level
- Fit stellar profile with a gaussian to determine center

Photometry: Centroiding/Sky

- But what if we have a lot of stars?
- Automate identifying stars
- Measure sky background, look for things a few sigma above background level
- Fit stellar profile with a gaussian to determine center

Photometry: Calibration

22.5

22.0

21.0

20.5

- We now have instrumental mag
- How do we relate back to other systems?
- Typically standard stars
- These days, wide-field surveys can provide an alternate method

Photometry: Calibration

- Star brightness will vary as a function of airmass
- If using standard stars, will typically need to observe them over a range of airmass
- Determine correction as a function of airmass

		1	2		9
	1	2		8	5
cude		1	2		8
nagnit	1	2		7	5
tal n		1	2		7
rumen	1	2		6	5
Inst		1	2		6
	1	2		5	5
		1	2		5

Brightness of a star over many hours, UT Jul 27 2001

Photometry: CMDs

V, B-V CMD of Praesepe (Johnson 1952)

Photometry: CMDs

r, r-i CMD of Pleiades (Rees 2016)

Photometry: CMDs

r, r-i CMD of Pleiades (Rees 2016)