Introduction to CCD Astronomy

Jon Rees Observational Astronomy Workshop

Astronomy By Eye

- Unaided limiting magnitude ~6
- Telescopes brought step-change
- But no direct record of observations, still limited on faint objects, optical illusions

July 6, 1890. $1239 - 93.7$ Preceding good of this shot is. Bright white chots Broad bels of very 060 \sim Varm White bell Borad diffuer. Equatorial gone Central strips last year faint and dull in color Brightnings Very semarkable lask and offerto, almost as dark as chadron 3 the sixter similar afort Simewhat brighting has just gone B. Sketch & Jupiter. Seeing 4 and sometimes 5. The red afort gone of an the light.
Shetch made a little earlier by mr. Campbell. Power about 300 (log proching)

Drawing of Jupiter by James Keeler, 1890 (Credit: Lick Observatory Historical Collections)

Astronomy By Eye

- Unaided limiting magnitude ~6
- Telescopes brought step-change
- But still difficult to deal with faint objects, optical illusions

Drawing of 'canals' on Mars by Percival Lowell, 1905 (Credit: Lowell Observatory)

Photographic Plates

- Stable, wide-field observations
- Excellent for large area surveys, e.g. Palomar, Schmidt
- Beyond visual wavelengths
- By exposing for long time faint objects

Top: Negative (left) and Positive (right) prints of a 135 min exposure of the Pleiades, Dec 1898 Bottom: Photographic plate showing 4 hr exposure of an edge-on galaxy, Nov 1899 (Credit: Lick Observatory Historical Collections)

Photomultiplier Tubes

- Photons hit cathode, eject electrons, secondary electrodes amplify the effect
- Converts incident photons to electrical signal
- Linear response Accurate calibration of photometry
- But only single element

The First CCD Observation

- Created by Bell Labs in 1969.
- First used for Astronomy in 1976 by JPL/UoA

1976 Observation of Uranus from the UoA 61-inch Telescope (Janesick & Blouke, 1987)

CCD Operation

- Doped semiconductor, photons liberate electrons
- Grid of electrodes -> potential wells (pixels)
- Voltages cycled to move charge to readout amplifiers
- Conversion from analogue voltage to digital counts - ADC
- Gain is set by electronics, e/ADU

Cross section of 3-phase CCD & charge transfer diagram (Dawiec 2011)

File Format (FITS)

- Data stored in 'FITS' files
- FITS files start with ascii headers contain useful information
- Data are stored in arrays after headers
- Many tools exist to read FITS e.g. DS9, IRAF, python routines

Detector Characteristics

Sensitivity (QE)

- Quantum Efficiency ability of detector to detect photons
- QE is a function of wavelength
- Detectors can be targeted at different wavelength regimes

Quantum efficiency for Nickel CCD2 (Credit: UCO/Lick)

Sensitivity (QE)

- Quantum Efficiency ability of detector to detect photons
- QE is a function of wavelength
- Detectors can be targeted at different wavelength regimes

Photon absorption length in silicon (Reicke 1994)

- Plate scale relation between detector pixels and physical size on sky
- Holdover from photographic plates
- For CCDs a convenient unit is arcsec/pixel
- 0.18"/pixel for Nickel CCD

- Plate scale relation between detector pixels and physical size on sky
- Holdover from photographic plates
- For CCDs a convenient unit is arcsec/pixel
- 0.18"/pixel for Nickel CCD

- Can 'bin' groups of pixels together
- Decreases resolution, but improves readout time and readout noise
- Imaging can bin with fewer downsides (sometimes)
- For spectroscopy, generally no binning

- Can 'bin' groups of pixels together
- Decreases resolution, but improves readout time and readout noise
- Imaging can bin with fewer downsides (sometimes)
- For spectroscopy, generally no **binning**

- Can 'bin' groups of pixels together
- Decreases resolution, but improves readout time and readout noise
- Imaging can bin with fewer downsides (sometimes)
- For spectroscopy, generally no binning

Windowing

- Can window down the detector
- Read out a subset of pixels
- Drastically improve readout time, limit Field of View
- Need to match calibrations to windowed data

Windowing

- Can window down the detector
- Read out a subset of pixels
- Drastically improve readout time, limit Field of View
- Need to match calibrations to windowed data

Linearity

- If detector was perfect, double number of photons -> double counts
- Only true up to a certain count limit
- At high counts, detectors may become non-linear

Linearity

- If detector was perfect, double number of photons -> double counts
- Only true up to a certain count limit
- At high counts, detectors may become non-linear

Saturation

- When electrons reach limit of ADC, no more can be counted
- Bright objects can cause electrons to exceed full well depth pixels
- Electrons will start to fill neighbouring pixels causing bleed trails Electron bleed trails from saturated stars (Credit:ESO)

Read Noise

- Conversion from analog to digital signal introduces noise
- Electronics also introduce spurious electrons throughout readout
- Can often decrease read noise by using slower read out modes

Thermal Noise/Dark Current

- Thermal energy can liberate electrons
- These are indistinguishable from electrons liberated by photons
- Solution cool the detector. Generally use liquid nitrogen
- Dark current negligible at these temperatures

Calibration Files

Bias

• Zero second exposure

- But signal isn't zero?
- We apply a constant voltage to the detector
- Positive base signal prevent negative values
- Overscan vs Bias frame

Bias

• Zero second exposure

- But signal isn't zero?
- We apply a constant voltage to the detector
- Positive base signal prevent negative values
- Overscan vs Bias frame

Flat-Field

- Uniform illumination source
- Dome flats (easy) vs twilight sky flats (better)
- Shows non-uniformity of detector, along with e.g. dust, filter imperfections

Flat-Field

- Uniform illumination source
- Dome flats (easy) vs twilight sky flats (better)
- Shows non-uniformity of detector, along with e.g. dust, filter imperfections

Flat-Field

- Uniform illumination source
- Dome flats (easy) vs twilight sky flats (better)
- Shows non-uniformity of detector, along with e.g. dust, filter imperfections

Fringing

- Interference due to photons reflecting within CCD
- Occurs longwards of ~700nm
- Largely due to atmospheric OH - cannot correct with flats
- But largely stable with time can use library frames to correct

Example Z-band fringe frame for INT-WFC

Cosmic Rays

• Blue - Relatively few events

• Red - Thicker chip, many cosmic ray events

Spectroscopy

- Same ideas apply to spectroscopy
- Bias/Flat fields
- Also arc lamps wavelength calibration

Arcs

Conclusions

- CCDs are great!
- CCDs are not perfect
- Beware of non-linearity/saturation
- Remember calibration files

Conclusions

- Calibration Files:
	- Bias (Bias Voltage)
	- Flat Field (Non-uniform response)
	- Arcs (Wavelength Calibration)
	- Fringe Frame, Standard Star

Extras: Photometry

- We have photons now what?
- Brightness or flux of star easy to measure
- Variation with time lightcurves
- Using filters can get you colour information

Credit: S. Littlefair (Sheffield University)

Photometry: Filter Systems

Photometry: Aperture Photometry

- Aperture photometry is most common
- Sum up pixels in an aperture centered on the star
- But what about sky brightness?
- Use annulus near star devoid of other sources
- Subtract average (median) sky from target starl

Photometry: Centroiding/Sky

- But what if we have a lot of stars?
- Automate identifying stars
- Measure sky background, look for things a few sigma above background level
- Fit stellar profile with a gaussian to determine center

Photometry: Centroiding/Sky

- But what if we have a lot of stars?
- Automate identifying stars
- Measure sky background, look for things a few sigma above background level
- Fit stellar profile with a gaussian to determine center

Photometry: Calibration

22.5

22.0

 21.0

20.5

- We now have instrumental mag
- How do we relate back to other systems?
- Typically standard stars
- These days, wide-field surveys can provide an alternate method

Photometry: Calibration

- Star brightness will vary as a function of airmass
- If using standard stars, will typically need to observe them over a range of airmass
- Determine correction as a function of airmass

Brightness of a star over many hours, UT Jul 27 2001

Photometry: CMDs

V, B-V CMD of Praesepe (Johnson 1952)

Photometry: CMDs

r, r-i CMD of Pleiades (Rees 2016)

Photometry: CMDs

r, r-i CMD of Pleiades (Rees 2016)