
nickel-calib

October 21, 2023

1 Nickel Direct Imaging Data Reduction
Basis of this jupyter notebook is from Keerthi Vasan Gopala Chandrasekaran (UC-Davis), who
created it from Elinor Gates’ (UCO/Lick) 2018 Observational Astronomy Workshop python data
reduction activity. Additional code contributions and conversion so it would work under Python 3
were from Azalee Bostroem (UC-Davis). Elinor Gates subsequently added commentary, expanded
the code to make sure everything is done inside python, and added the cosmic ray rejection section.
Jon Rees modified things further and added the photometry section. This is designed to work with
Python 3.

If the data are properly acquired and FITS headers are accurate, this should work as a basic data
reduction pipeline. However, proceeding slowly, one step at a time, examining calibration and
image frames at each step is encouraged so that understanding of each step and its importance to
the general data reduction is understood, as well as catching errors and implementing fixes as soon
as possible in the procedures.

1.1 Import the Necessary Python Packages

[]: from astropy.io import fits,ascii
import numpy as np
import sys, getopt,os
from glob import glob
import math
shutil is used for the file copying
import shutil
tqdm gives us a handy progress bar for some of the more time consuming steps
from tqdm.notebook import tqdm

1.2 Deal with Astroscrappy
Later in the notebook we’ll use astroscrappy to deal with cosmic ray removal. This cell will install
astroscrappy if it is not already installed. If the cell runs without errors, you’re (probably) good to
go.

If Astroscrappy segfaults later in this notebook, try removing it before re-running the below code
(pip uninstall -y astroscrappy)

If you’re running this on Windows, you’ll need Microsoft’s Visual C++ Build Tools:
https://visualstudio.microsoft.com/visual-cpp-build-tools/

1

If you’re running on Windows Subsystem for Linux you’ll need to install gcc

[]: try:
import astroscrappy
print("module 'astroscrappy' is installed")

except ModuleNotFoundError:
print("module 'astroscrappy' is not installed")
!{sys.executable} -m pip install astroscrappy

1.3 Organise Data
Everyone will have their own preferred method of organising their data. As the current arbiter
of this reduction activity, the notebook has been written to conform to my preferred method:
Original data files should never be overwritten/altered. You should be able to go back and re-run
the reduction multiple times from your original files as you learn new quirks of the data.

We will set the path to the parent directory below using the variable source_dir.

Set up initial directories

Create two directories, ‘Data’ and ‘Reduced’. Place your data for the given night
inside the ‘Data’ directory.

The initial directory structure should include a ‘Data’ directory and a ‘Reduced’ directory. The
initial data files will be copied from ‘Data’ to ‘Reduced’, and all subsequent operations will be
performed on the data in the ‘Reduced’ directory. If you need to re-run the reduction, you can
delete the files in the ‘Reduced’ directory without worry.

Below we automatically set up directories for file sorting inside the Reduced directory:

Change Source Directory

You’ll want to change the source directory appropriately for your data location.

[]: # The source directory. Set this to wherever your Data and Reduced directories␣
↪live.

source_dir = '/home/jrees/DataReduction/20230720/'

Location of the folder containing all the data files (bias, domeflats,␣
↪twilight flats, and the data files)

data_dir = source_dir + 'Data/'
redu_dir = source_dir + 'Reduced/'

Check that the data directory actually exists
if os.path.exists(data_dir) == False:

raise ValueError("Data directory does not exist")
And make sure that it is not empty
if len(os.listdir(data_dir)) == 0:

raise ValueError("Data directory is empty")

2

Make some directories to organise files by type (bias, flats etc.)
The archive directory will store files that are no longer needed for the data␣

↪reduction,
but still available to examine if needed if there are issues with the data␣

↪reduction.

biasdir = redu_dir+'Bias/'
datadir = redu_dir+'Data_files/'
domeflatdir = redu_dir+'Flat_dome/'
twiflatdir = redu_dir+'Flat_twilight/'
archivedir = redu_dir+'Archive/'

os.makedirs(biasdir,exist_ok=True)
os.makedirs(datadir,exist_ok=True)
os.makedirs(domeflatdir,exist_ok=True)
os.makedirs(twiflatdir,exist_ok=True)
os.makedirs(archivedir,exist_ok=True)

1.4 Copy Data
Now we copy the initial data to the Reduced directory. This way our original data remains safe,
and we can always easily reproduce what we did to reduce the data.

Set any files to be removed

If you have any bad data frames, you can remove them by adding the frame numbers
to delfilelist and setting delfiles = ‘yes’

[]: # Copy all of the data from the Data directory to the Reduction directory
Our input list is just all of the FITS files in the Data directory
ifilelist = glob(data_dir+'*.fits')
Our output location is the Reduced direcory so doesn't need a list

Copy the files using shutil
for file in ifilelist:

shutil.copy2(file, redu_dir)

And if you want to remove any known-bad files, add them to the list below and␣
↪set delfiles = yes

delfiles = 'no'

if delfiles == 'yes':
Set the frame numbers of the frames to delete from the Reduced directory
delfilelist = ('d1036', 'd1037', 'd1041', 'd1045')
for file in delfilelist:

Check if the file exists
if os.path.isfile(redu_dir + file + '.fits'):

3

If it does exist, delete it
os.remove(redu_dir + file + '.fits')
print("Deleting FITS file " + file + '.fits' + " from Reduced␣

↪direcory.")
print("---")

1.5 Overscan Subtraction
The overscan region(s) are additional columns appended to the data that measure the overall bias
values for each row at the time the data were acquired. Depending on the camera, these may be
very stable over a night of observing, or vary from image to image. This bias level needs to be
subtracted before further data reduction steps should be done. Overscan subtraction is done on all
calibration and science files.

The original overscanLickObsP3.py code is available on-line via our optical instrument manuals
will read a list of files in, determine the overscan and data regions for each file, fit the overscan,
then subtract it from the data, writing out a new overscan subtracted image for each input image.
This code is specific to Lick Observatory data and keywords, but could easily be altered with the
appropriate keywords to work with other detectors with one or two amplifiers. The code below has
been modified from the original to create input and output filelists according to the file directory
denoted above. If you have a lot of data, this may take a few minutes to run.

[]: # set fit = 'yes' to do legendre fit to overscan regions, 'no' to just use the␣
↪median

fit = 'yes'

for i in range(0,numifiles):
ifile=ifilelist[i]
basename=os.path.basename(ifile)
print(basename)

Our input file list is everything in the Reduced directory
ifilelist = glob(redu_dir+'*.fits')

For each file in ifilelist, we need to read in the file,
figure out overscan and data regions, fit the overscan with desired function␣

↪(if any),
subtract the overscan from the data, and finally write the data to an output␣

↪file.

for ifile in tqdm(ifilelist):
The output files will have _os appended (overscan subtracted) in their␣

↪file names
ofile = ifile[:-5]+ '_os.fits'
Read in the input FITS file using the fits module from astropy.io
data, header = fits.getdata(ifile,header=True)
Change data to float

4

data=data.astype('float32')

read necessary keywords from fits header

#number of pixels in image
xsize = header['NAXIS1']
ysize = header['NAXIS2']
#start column and row
xorig = header['CRVAL1U']
yorig = header['CRVAL2U']
#binning and direction of reading pixels
cdelt1 = header['CDELT1U']
cdelt2 = header['CDELT2U']
number of overscan rows/columns
rover = header['ROVER']
cover = header['COVER']
#unbinned detector size
detxsize = header['DNAXIS1']
detysize = header['DNAXIS2']
#number of amplifiers
ampsx = header['AMPSCOL']
ampsy = header['AMPSROW']

determine number and sizes of overscan and data regions
namps = ampsx*ampsy
if rover > 0:

over=rover
sys.exit('Program does not yet deal with row overscans. Exiting.')

else:
over = cover

if over == 0:
sys.exit('No overscan region specified in FITS header. Exiting.')

single amplifier mode (assumes overscan is the righmost columns)
if namps == 1:

biassec = data[:,xsize-cover:xsize]
datasec = data[0:,0:xsize-cover]

median overscan section
bias=np.median(biassec, axis=1)

legendre fit
if fit == 'yes':

fit
lfit = np.polynomial.legendre.legfit(range(0,len(bias)),bias,3)
bias = np.polynomial.legendre.legval(range(0,len(bias)),lfit)

5

subtract overscan
datanew = datasec
for i in range(datasec.shape[1]):

datanew[:,i] = datasec[:,i]-bias

two amplifier mode (assumes both amplifer overscans are at rightmost␣
↪columns)

if namps == 2:
biasseca = data[:,xsize-cover*2:xsize-cover]
biassecb = data[:,xsize-cover:xsize]

median overscan sections
biasa=np.median(biasseca,axis=1)
biasb=np.median(biassecb,axis=1)

legendre fit
if fit == 'yes':

lfita = np.polynomial.legendre.legfit(range(0,len(biasa)),biasa,3)
lfitb = np.polynomial.legendre.legfit(range(0,len(biasb)),biasb,3)
biasa = np.polynomial.legendre.legval(range(0,len(biasa)),lfita)
biasb = np.polynomial.legendre.legval(range(0,len(biasb)),lfitb)

Extract data regions

determine boundary between amplifiers
bd=detxsize/2/abs(cdelt1)

calculate x origin of readout in binned units if cdelt1 negative or␣
↪positive

if cdelt1 < 0:
#if no binning x0=xorig-xsize-2*cover, with binning:
x0=xorig/abs(cdelt1)- (xsize-2*cover)

else:
x0=xorig/cdelt1

xtest=x0+xsize-cover*2 # need to test if all data on one or two␣
↪amplifiers

determine which columns are on which amplifier and subtract proper␣
↪overscan region

if xtest < bd: # all data on left amplifier
datanew=data[:,0:xsize-cover*2]
m=datanew.shape[1]
for i in range(0,m):

datanew[:,i]=datanew[:,i]-biasa

6

if x0 >= bd: # all data on right amplifier
datanew=data[:,0:xsize-cover*2]
m=datanew.shape[1]
for i in range(0,m):

datanew[:,i]=datanew[:,i]-biasb

if xtest >= bd and x0 < bd: #data on both amplifiers
x1=int(bd-x0)
dataa=data[:,0:x1]
datab=data[:,x1:-cover*2]
ma=dataa.shape[1]
mb=datab.shape[1]
for i in range(0,ma):

dataa[:,i]=dataa[:,i]-biasa
for i in range(0,mb):

datab[:,i]=datab[:,i]-biasb
merge dataa and datab into single image
datanew=np.hstack([dataa,datab])

if namps > 2:
sys.exit('Program does not yet deal with more than two overscan regions.

↪ Exiting.')

add info to header
header['HISTORY'] = 'Overscan subtracted'

write new fits file
fits.writeto(ofile,datanew,header,overwrite=True)
And move the input file to the archive directory
basename=os.path.basename(ifile)
os.rename(ifile,archivedir+basename)

When done with the subtraction, let us know
print("Overscan subtraction completed.")
print("---")

2 Organise Overscan Subtracted Files
Move all the overscan subtracted (e.g. the newly created *_os.fits) bias, data, and flat field files
into separate folders, based upon the OBJECT field in the FITS headers.

Check Flat Field headers

If your flat field OBJECT field does not use dome/twi for dome flats and twilight flats
respectively, you will need to update the ‘if’ loops below.

7

[]: # Make a list of all the overscan subtracted files
os_files = glob(redu_dir+'*os.fits')

Move calibration frames to appropriate directories
In this case we are assuming that twilight flats have 'twi' in the OBJECT␣

↪FITS header keyword,
dome flats have 'dome' in OBJECT, etc. If the names are different, you'll␣

↪need to adjust the search strings
for sorting the files.
for ifile in os_files:

hdr = fits.getheader(ifile)
basename=os.path.basename(ifile)
if 'twi' in hdr['OBJECT'].lower():

os.rename(ifile,twiflatdir+basename)
elif 'dome' in hdr['OBJECT'].lower():

os.rename(ifile,domeflatdir+basename)
elif 'bias' in hdr['OBJECT'].lower():

os.rename(ifile,biasdir+basename)
else:

os.rename(ifile,datadir+basename)

2.1 Create Master Bias File
The Master Bias file is the median combined bias frames. If the detector is particularly flat with
no bias structure, this step may not be needed. In the case of the Nickel Direct Imaging CCD,
there is significant bias structure that needs to be removed, so this step is necessary to remove that
structure.

[]: # Create list of bias files
biasfiles = glob(biasdir + '*.fits')

data_stack = []
for file in biasfiles:

data_stack.append(fits.getdata(file))

Median combine the bias files to create the Master Bias frame
medianBias = np.median(data_stack,axis=0)

Write out the master bias file with updated FITS header information
header = fits.getheader(biasfiles[0])
header['HISTORY'] = 'Median combined'
fits.writeto(redu_dir+'bias.fits',medianBias,header)
For Windows machines we have to reset the data stack, otherwise it keeps the␣

↪bias
files open and we can't move them
data_stack = []

8

Move the no longer needed overscan subtracted frames to the archive directory
for file in biasfiles:

basename=os.path.basename(file)
os.rename(file,archivedir+basename)

print("Created Master Bias frame.")
print("---")

2.2 Check Master Bias File
It is best to check the bias.fits file to make sure it looks OK before continuing. DS9 is a frequently
used tool in astronomy for examining FITS images. DS9 is not a python tool, but freely down-
loadable for virtually all computer operating systems. Typical Nickel bias images look like the
following.

3 Bias Subtract Flat Field and Data Frames
Because the files were sorted into subdirectories, we’ll be doing essentially the same steps for the
files in the Data_files, flat_dome, and flat_twilight directories.

[]: # Bias subtracting the data files

Make list of input files
datafilesin = glob(datadir + '*.fits')

for ifile in tqdm(datafilesin):
_bs stands for bias subtracted in the output file names
ofile = ifile[:-5]+ '_bs.fits'
data,header = fits.getdata(ifile,header=True)
dataout = data - medianBias
header['HISTORY'] = 'Bias subtracted'
fits.writeto(ofile,dataout,header)
Again, clear the arrays so Windows doesn't complain about open files
data = []
header = []
Move the no longer needed overscan subtracted files to the archive␣

↪directory
basename=os.path.basename(ifile)
os.rename(ifile,archivedir+basename)

print("Debiased Data frames.")
print("---")

[]: # Bias subtracting the dome flat files

Make list of input dome flat field files
datafilesin = glob(domeflatdir + '*.fits')

9

for ifile in tqdm(datafilesin):
_bs stands for bias subtracted in the output file names
ofile = ifile[:-5]+ '_bs.fits'
data,header = fits.getdata(ifile,header=True)
dataout = data - medianBias
header['HISTORY'] = 'Bias subtracted'
fits.writeto(ofile,dataout,header)
Move the no longer needed overscan subtracted files to the archive␣

↪directory
data = []
header = []
basename=os.path.basename(ifile)
os.rename(ifile,archivedir+basename)

print("Debiased Dome Flat frames.")
print("---")

[]: # Bias subtracting the twilight flat files

Make list of input twilight flat field files
datafilesin = glob(twiflatdir + '*.fits')

for ifile in tqdm(datafilesin):
_bs stands for bias subtracted in the output file names
ofile = ifile[:-5]+ '_bs.fits'
data,header = fits.getdata(ifile,header=True)
dataout = data - medianBias
header['HISTORY'] = 'Bias subtracted'
fits.writeto(ofile,dataout,header)
Move the no longer needed overscan subtracted files to the archive␣

↪directory
data = []
header = []
basename=os.path.basename(ifile)
os.rename(ifile,archivedir+basename)

print("Debiased Twilight Flat frames.")
print("---")

4 Create Normalised Flat Field frames
For this example we will use the twilight flat field frames, as they are generally superior to dome
flats. One uses dome flats if the twilight flat field frames were unattainable due to weather or there
was some other technical issues. First we will create lists of files for each filter, then combine the

10

frames to create the final normalised flat field frame for each filter.

Choose Twilight Flats or Dome Flats and set the correct Filters

If you need to use Dome Flats instead of Twilight Flats, change flat_dir to reflect this.

By default we assume B, V, R, I filters were used. Update them below if you used a
different set.

[]: # This assumes that the B, V, R, and I filters were used. If different filters␣
↪were used, you'll need to change the

code below accordingly

If you are using dome flat fields, rather than twilight flats, change the␣
↪below to domeflatdir

flat_dir = twiflatdir
If you are using different filters, or a different number of filters, set␣

↪them below
filters = ['B','V','R','I']

print("Using Filters: ")
print (filters)
if flat_dir == twiflatdir:

print("Using Flat Field frames from Twilight Flat directory.")
elif flat_dir == domeflatdir:

print("Using Flat Field frames from Dome Flat directory.")
else:

print("Unrecognised Flat Field directory")
print("---")

Make list of all the flat field files in the flat field directory
flatlist = glob(flat_dir + '*.fits')

Our file lists will be contained in a dictionary called flist
flist = {}

for filter in filters:
Create an empty list for the file names
flist[filter] = []

Sort files into lists based on the filter used
for ifile in flatlist:

Read the header for each flat file
hdr = fits.getheader(ifile)
Read which filter this file was taken with
filt = hdr['FILTNAM']
Loop through each of the filters in our filter set
for filter in filters:

11

If the filter listed in the header matches the filter for this array,␣
↪add the file to the array

if filt == filter:
flist[filter].append(ifile)

[]: # For each filter, we're going to create a Master Flat.
We'll use another dictionary to keep track of the data stacks for each␣

↪filter,
and one to store the normalised flat
flat_stack = {}
flat = {}

for filter in filters:
Initialise the stack for this filter
flat_stack[filter] = []
flat[filter] = []

Read in each file in this filter and divide by the median to normalise
for file in flist[filter]:

data,header = fits.getdata(file,header=True)
data = data / np.median(data)
Append the data to the stacked data
flat_stack[filter].append(data)
Move the now no longer needed files to archivedir
basename=os.path.basename(file)
os.rename(file,archivedir+basename)

Median combine the flat fields
flat[filter] = np.median(flat_stack[filter],axis=0)
And divide by the mean to normalise
flat[filter] = flat[filter]/np.mean(flat[filter])
Note in the header what we have done
header['HISTORY'] = 'Combined and normalised flat field'
fits.writeto(redu_dir + filter + 'flat.

↪fits',flat[filter],header,overwrite=True)
print("Created normalised flat field in " + filter + " filter.")
print("---")

5 Check Normalised Flat Field Frames
It is wise to check the normalised flat field frames using DS9 or similar tool. Most pixel values
should be very close to 1.0. A typical B-band normalised flat field is shown as an example.

12

6 Flat Field Data Frames
Flat fielding data is an essential step in the data reduction to calibrate the relative sensitivies of
each pixel. First the data files will be sorted based on their filters, then each frame divided by the
normalised flat field file in the appropriate filter.

[]: # Our file lists will again be contained in a dictionary called flist
flist = {}

for filter in filters:
Create an empty list for the file names
flist[filter] = []

Make list of all bias subracted data files
datalist = glob(datadir + '*.fits')

Sort files into lists based on the filter used
for ifile in datalist:

Read the header for each file
hdr = fits.getheader(ifile)
Read which filter this file was taken with
filt = hdr['FILTNAM']
Loop through each of the filters in our filter set
for filter in filters:

If the filter listed in the header matches the filter for this array,␣
↪add the file to the array

if filt == filter:
flist[filter].append(ifile)

[]: # For each filter, we're going to divide the Data by the Master Flat.
We'll use another dictionary to keep track of the data stacks for each filter
data_stack = {}

for filter in filters:
Initialise the stack for this filter
data_stack[filter] = []

Read in each file in this filter and divide by the relevant flat
for file in tqdm(flist[filter]):

data,header = fits.getdata(file,header=True)
dataout = data / flat[filter]
Note in the header what we have done
header['HISTORY'] = 'Flat Fielded'
Create the output filename
ofile = file[:-5]+ '_ff.fits'
And write out the file
fits.writeto(ofile,dataout,header)
Move bias subtracted images to archive

13

data = []
header = []
basename = os.path.basename(file)
os.rename(file,archivedir+basename)

print("Flatfielded data frames in " + filter + " filter.")
print("---")

7 Examine Flat Fielded Images
It is highly recommended to examine all the images after flat fielding to be sure that the flat field
correction has been done propertly. The image below shows a properly flat fielded image.

8 Fix Known Bad Columns in Nickel CCD2 Images
The Nickel CCD2 detector has a number of known bad columns (easily seen in the flat fielded
image above). These columns can be “fixed” by replacing them with the mean values of neighboring
columns. First a bad pixel pixel mask is made highlighting the known bad columns. Then for each
bad pixel, the mean of the surrounding good pixels is calculated and replaces the bad pixel. This
procedure is somewhat time consuming, so be patient while it runs. Do not be alarmed if it gives
a warning about converting mask elements to nan, as it still works correctly.

[]: # Procedure to fix known bad columns in CCD2 images. 2016 Oct 2 E. Gates

Create list of flat fielded data
datalist = glob(datadir + '*.fits')

_bp in output file name stands for bad pixel corrected
#dataout = [i[:-5]+ '_bp.fits' for i in datain]

#n=len(datain)
size of box for area around bad pixel to be averaged
s=2

read in one image to get image size for bad pixel mask
data,header=fits.getdata(datalist[0],header=True)

make bad pixel mask
mask=np.ma.make_mask(data,copy=True,shrink=True,dtype=bool)
mask[:,:]=False
mask[:,255:257]=True
mask[:,783:785]=True
mask[:,1001:1003]=True

loop for all the data bad pixel correction
Progress bar because this can take a looong time

14

for file in tqdm(datalist):
data,header=fits.getdata(file,header=True)
mdata=np.ma.masked_array(data,mask=mask,fill_value=np.nan)
dataFixed=data.copy()
for i in range(0,mdata.shape[0]):

for j in range(0,mdata.shape[1]):
if math.isnan(mdata[i,j]):

x1=i-s
x2=i+s+1
y1=j-s
y2=j+s+1
if x1<0:

x1=0
if x2>mdata.shape[0]:

x2=mdata.shape[0]
if y1<0:

y1=0
if y2>mdata.shape[1]:

y2=mdata.shape[1]
dataFixed[i,j]=np.mean(mdata[x1:x2,y1:y2])

header['HISTORY']='Bad columns replaced'
ofile = file[:-5]+ '_bp.fits'
fits.writeto(ofile,dataFixed,header)
Move the now no longer needed files to archivedir
data = []
header = []
mdata = []
basename=os.path.basename(file)
os.rename(file,archivedir+basename)

print("Fixed bad columns in Data frames.")
print("---")

9 Examine Bad Pixel Corrected Images
As always, it is good to check the pixel corrected images using DS9 or other image display tool.
You can see in the image below that the bad columns were fixed reasonably well.

10 Cosmic Ray Removal
While the data probably look very good at this point, there are likely many cosmic rays contami-
nating the data. Removing all cosmic rays with software is difficult, but there are scripts that do a
pretty good job. In this case we’ll use the python module astroscrappy to do cosmic ray rejection.
If you don’t have astroscrappy installed, you’ll want to install it using pip:

pip install astroscrappy

15

Note, it is not unusual to have to hand remove cosmic rays that are contaminating key pixels for
data analysis, but that won’t be covered in this jupyter notebook.

[]: import astroscrappy
Make a list of all the reduced data files
datalist = glob(datadir + '*.fits')
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

for file in tqdm(datalist):
data,header=fits.getdata(file,header=True)
data_fixed = data.copy()
mask = np.ma.make_mask(data,copy=True,shrink=True, dtype=np.bool_)
mask[:,:] = False
crmask,dataCR = astroscrappy.

↪detect_cosmics(data_fixed,inmask=mask,cleantype='medmask')
header['HISTORY'] = 'CR and bad pixels fixed with astroscrappy'
ofile = file[:-5]+ '_crj.fits'
fits.writeto(ofile,dataCR,header)
Move the now no longer needed files to archivedir
data = []
header = []
basename=os.path.basename(file)
os.rename(file,archivedir+basename)

print("Completed Cosmic Ray Removal using astroscrappy.")
print("---")

11 Inspect Final Images
We have reached the end of the basic data reduction procedure where we have performed overscan
subtraction, bias subtraction, flat field correction, removed the bad pixels in the CCD, and replaced
cosmic ray hits. The saved final images can now be analyzed for whatever science goal is desired,
e.g. astrometry or photometry.

12 Additional Python Resources and Tutorials
Python4Astronomers http://python4astronomers.github.io/intro/intro.html

AstroPython Tutorials http://www.astropython.org/tutorials/

astropy Tutorials http://www.astropy.org/astropy-tutorials/

Python for Astronomers http://www.iac.es/sieinvens/siepedia/pmwiki.php?n=HOWTOs.EmpezandoPython

16

13 Making Three Color Images with DS9
Now that you have the data reduced, you can make a pretty three color image. Basic usage of DS9
RGB frames is described in the following video.

https://www.youtube.com/watch?v=G77RcsAfMGM

14 Making Three Color Images with GIMP
Basic tutorial to make a three color images with GIMP.

https://www.youtube.com/watch?v=56-ZaZbA3S0

15 Analyzing Data
Imexam is a convient tool based on IRAF IMEXAMINE. One can do aperture photometry, radial
profile plots, FWHM measurements, etc. with this tool. Instructions for installation and use are
available on-line at https://imexam.readthedocs.io/en/0.9.1/

Other photometry tools are part of the photutils python package (in fact some of the imexam
procedures require photoutils). https://photutils.readthedocs.io/en/stable/

17

	Nickel Direct Imaging Data Reduction
	Import the Necessary Python Packages
	Deal with Astroscrappy
	Organise Data
	Copy Data
	Overscan Subtraction

	Organise Overscan Subtracted Files
	Create Master Bias File
	Check Master Bias File

	Bias Subtract Flat Field and Data Frames
	Create Normalised Flat Field frames
	Check Normalised Flat Field Frames
	Flat Field Data Frames
	Examine Flat Fielded Images
	Fix Known Bad Columns in Nickel CCD2 Images
	Examine Bad Pixel Corrected Images
	Cosmic Ray Removal
	Inspect Final Images
	Additional Python Resources and Tutorials
	Making Three Color Images with DS9
	Making Three Color Images with GIMP
	Analyzing Data

