
Nickel Direct Imaging Data Reduction

Basis of this jupyter notebook is from Keerthi Vasan Gopala Chandrasekaran (UC-Davis), who created it

from Elinor Gates' (UCO/Lick) 2018 Observational Astronomy Workshop python data reduction activity.

Additional code contributions and conversion so it would work under Python 3 were from Azalee Bostroem

(UC-Davis). Elinor Gates subsequently added commentary, expanded the code to make sure everything is

done inside python, and added the cosmic ray rejection section. This is designed to work with Python 3.

If the data are properly acquired and FITS headers are accurate, this should work as a basic data reduction

pipeline. However, proceeding slowly, one step at a time, examining calibration and image frames at each

step is encouraged so that understanding of each step and its importance to the general data reduction is

understood, as well as catching errors and implementing fixes as soon as possible in the procedures.

Import the Necessary Python Packages

Organize Data

All data should be in one directory initially. This can be any directory as the path to it will be set as the

source_dir below. You'll want to change the source directory appropriately for your data location. Also, you

should remove any bad frames (e.g. flat field frames with unacceptable properties, etc.) from the directory

so they don't contaminate the reduced data. It is wise to keep a separate backup of the raw data incase

there are problems and you need to start data reduction over from the beginning.

Overscan Subtraction

The overscan region(s) are additional columns appended to the data that measure the overall bias values

for each row at the time the data were acquired. Depending on the camera, these may be very stable over a

night of observing, or vary from image to image. This bias level needs to be subtracted before further data

reduction steps should be done. Overscan subtraction is done on all calibration and science files.

The original overscanLickObsP3.py code is available on-line via our optical instrument manuals will read a

list of files in, determine the overscan and data regions for each file, fit the overscan, then subtract it from

the data, writing out a new overscan subtracted image for each input image. This code is specific to Lick

Observatory data and keywords, but could easily be altered with the appropriate keywords to work with

other detectors with one or two amplifiers. The code below has been modified from the original to create

input and output filelists according to the file directory denoted above. If you have a lot of data, this may

take a few minutes to run.

In [1]: from astropy.io import fits,ascii
import numpy as np
import sys, getopt,os
import glob

In [2]: source_dir = '/Users/egates/Desktop/python3Test/'

Location of the folder containing all the data files (bias, domeflats, twilight flats, a
f = source_dir + '*.fits'

In [3]: def main(argv):

 # set fit = 'yes' to do legendre fit to overscan regions, 'no' to just use the median
 fit = 'yes'

 # create input and output file name lists. Output files will have unique names, leavi
 ifilelist = glob.glob(f)
 # _os stands for overscan subtracted in the output file names
 ofilelist = [i[:-5]+ '_os.fits' for i in ifilelist]

 # how many files
 numifiles = len(ifilelist)
 numofiles = len(ofilelist)
 if numifiles != numofiles:
 sys.exit('Input and output file lists have different numbers of files. Exiting.')

 # For each file in ifilelist, read in file, figure out overscan and data regions, fit
 # overscan with desired function (if any), and subtract from data.
 # Write data to ofilelist value.

 for i in range(0,numifiles):
 ifile=ifilelist[i]
 ofile=ofilelist[i]
 data, header = fits.getdata(ifile,header=True)

 # change data to float
 data=data.astype('float32')

 # read necessary keywords from fits header

 #number of pixels in image
 xsize = header['NAXIS1']
 ysize = header['NAXIS2']
 #start column and row
 xorig = header['CRVAL1U']
 yorig = header['CRVAL2U']
 #binning and direction of reading pixels
 cdelt1 = header['CDELT1U']
 cdelt2 = header['CDELT2U']
 #number of overscan columns
 rover = header['ROVER']
 cover = header['COVER']
 #unbinned detector size
 detxsize = header['DNAXIS1']
 detysize = header['DNAXIS2']
 #number of amplifiers
 ampsx = header['AMPSCOL']
 ampsy = header['AMPSROW']

 # determine number and sizes of overscan and data regions
 namps = ampsx*ampsy
 if rover > 0:
 over=rover
 sys.exit('Program does not yet deal with row overscans. Exiting.')
 else:
 over = cover
 if over == 0:
 sys.exit('No overscan region specified in FITS header. Exiting.')

 # single amplifier mode (assumes overscan is the righmost columns)
 if namps == 1:
 biassec = data[:,xsize-cover:xsize]
 datasec = data[0:,0:xsize-cover]

 # median overscan section
 bias=np.median(biassec, axis=1)

 # legendre fit
 if fit == 'yes':
 # fit
 lfit = np.polynomial.legendre.legfit(range(0,len(bias)),bias,3)
 bias = np.polynomial.legendre.legval(range(0,len(bias)),lfit)

 # subtract overscan
 datanew = datasec
 for i in range(datasec.shape[1]):
 datanew[:,i] = datasec[:,i]-bias

 # two amplifier mode (assumes both amplifer overscans are at rightmost columns)
 if namps == 2:
 biasseca = data[:,xsize-cover*2:xsize-cover]
 biassecb = data[:,xsize-cover:xsize]

 # median overscan sections
 biasa=np.median(biasseca,axis=1)
 biasb=np.median(biassecb,axis=1)

 # legendre fit
 if fit == 'yes':
 lfita = np.polynomial.legendre.legfit(range(0,len(biasa)),biasa,3)
 lfitb = np.polynomial.legendre.legfit(range(0,len(biasb)),biasb,3)
 biasa = np.polynomial.legendre.legval(range(0,len(biasa)),lfita)
 biasb = np.polynomial.legendre.legval(range(0,len(biasb)),lfitb)

 # Extract data regions

 # determine boundary between amplifiers
 bd=detxsize/2/abs(cdelt1)

 # calculate x origin of readout in binned units if cdelt1 negative or positive
 if cdelt1 < 0:
 #if no binning x0=xorig-xsize-2*cover, with binning:
 x0=xorig/abs(cdelt1)- (xsize-2*cover)
 else:
 x0=xorig/cdelt1

 xtest=x0+xsize-cover*2 # need to test if all data on one or two amplifiers

 # determine which columns are on which amplifier and subtract proper overscan

 if xtest < bd: # all data on left amplifier
 datanew=data[:,0:xsize-cover*2]
 m=datanew.shape[1]
 for i in range(0,m):
 datanew[:,i]=datanew[:,i]-biasa

 if x0 >= bd: # all data on right amplifier
 datanew=data[:,0:xsize-cover*2]
 m=datanew.shape[1]
 for i in range(0,m):
 datanew[:,i]=datanew[:,i]-biasb

 if xtest >= bd and x0 < bd: #data on both amplifiers
 x1=int(bd-x0)
 dataa=data[:,0:x1]
 datab=data[:,x1:-cover*2]
 ma=dataa.shape[1]
 mb=datab.shape[1]
 for i in range(0,ma):
 dataa[:,i]=dataa[:,i]-biasa
 for i in range(0,mb):
 datab[:,i]=datab[:,i]-biasb
 # merge dataa and datab into single image

Organize Overscan Subtracted Files
Move all the overscan subtracted (e.g. the newly created *_os.fits) bias, data, and flat field files in separate

folders, for example:

Below we set up paths for file sorting, and sort the files into the appropriate folders.

 datanew=np.hstack([dataa,datab])

 if namps > 2:
 sys.exit('Program does not yet deal with more than two overscan regions. Exiti

 # add info to header
 header['HISTORY'] = 'Overscan subtracted'

 # write new fits file
 fits.writeto(ofile,datanew,header,overwrite=True)

if __name__ == "__main__":
 main(sys.argv[1:])

In [4]: # Make the directories for this data reduction procedure
I like to make an archive directory to store files that are no longer needed for the dat
but still available to examine if needed if there are issues with the data reduction.

biasdir = source_dir+'bias/'
datadir = source_dir+'Data_files/'
domeflatdir = source_dir+'flat_dome/'
twiflatdir = source_dir+'flat_twilight/'
archivedir = source_dir+'archive/'

os.mkdir(biasdir)
os.mkdir(datadir)
os.mkdir(domeflatdir)
os.mkdir(twiflatdir)
os.mkdir(archivedir)

In [5]: # Make a list of all the overscan subtracted files
os_files = glob.glob(source_dir+'*os.fits')

Move calibration frames to appropriate directories
In this case we are assuming that twilight flats have 'twi' in the OBJECT FITS header ke
dome flats have 'dome' in OBJECT, etc. If the names are different, you'll need to adjus
for sorting the files.
for ifile in os_files:
 hdr = fits.getheader(ifile)
 basename=os.path.basename(ifile)
 if 'twi' in hdr['OBJECT'].lower():
 os.rename(ifile,twiflatdir+basename)
 elif 'dome' in hdr['OBJECT'].lower():
 os.rename(ifile,domeflatdir+basename)
 elif 'bias' in hdr['OBJECT'].lower():
 os.rename(ifile,biasdir+basename)

Create Master Bias File

The Master Bias file is the median combined bias frames. If the detector is particularly flat with no bias

structure, this step may not be needed. In the case of the Nickel Direct Imaging CCD, there is significant

bias structure that needs to be removed, so this step is necessary to remove that structure.

Check Master Bias File

It is best to check the bias.fits file to make sure it looks OK before continuing. DS9 is a frequently used tool

in astronomy for examining FITS images. DS9 is not a python tool, but freely downloadable for virtually all

computer operating systems. Typical Nickel bias images look like the following.

 else:
 os.rename(ifile,datadir+basename)

In [6]: # Location of the folders and files for use later
f1 = source_dir + 'bias/*.fits'
f2 = source_dir + 'Data_files/*.fits'
f3 = source_dir + 'flat_dome/*.fits'
f4 = source_dir + 'flat_twilight/*.fits'

In [7]: # Create list of bias files
biasfiles = glob.glob(f1)
data_stack = []
for file in biasfiles:
 data_stack.append(fits.getdata(file))

Median combine the bias files to create the Master Bias frame
medianBias = np.median(data_stack,axis=0)

Write out the master bias file with updated FITS header information
header = fits.getheader(biasfiles[0])
header['HISTORY'] = 'Median combined'
fits.writeto(source_dir+'bias.fits',medianBias,header)

Move the no longer needed overscan subtracted frames to the archive directory
for file in biasfiles:
 basename=os.path.basename(file)
 os.rename(file,archivedir+basename)

Bias Subtract Flat Field and Data Frames
Because the files were sorted into subdirectories, we'll be doing essentially the same steps for the files in

the Data_files, flat_dome, and flat_twilight directories.

In [8]: # Bias subtracting the data files

Make list of input bias files
datafilesin = glob.glob(f2)

_bs stands for bias subtracted in the output file names
datafilesout = [i[:-5]+ '_bs.fits' for i in datafilesin]

n = len(datafilesin)
for i in range(0,n):

Create Normalized Flat Field frames

For this example we will use the twilight flat field frames, as they are generally superior to dome flats. One

uses dome flats if the twilight flat field frames were unattainable due to weather or there was some other

technical issues. First we will create lists of files for each filter, then combine the frames to create the final

normalized flat field frame for each filter.

 data,header = fits.getdata(datafilesin[i],header=True)
 dataout = data - medianBias
 header['HISTORY'] = 'Bias subtracted'
 fits.writeto(datafilesout[i],dataout,header)
 # Move the no longer needed overscan subtracted files to the archive directory
 basename=os.path.basename(datafilesin[i])
 os.rename(datafilesin[i],archivedir+basename)

In [9]: # Bias subtracting the dome flat files

Make list of input dome flat field files
datafilesin = glob.glob(f3)

_bs stands for bias subtracted in the output file names
datafilesout = [i[:-5]+ '_bs.fits' for i in datafilesin]

n = len(datafilesin)
for i in range(0,n):
 data,header = fits.getdata(datafilesin[i],header=True)
 dataout = data - medianBias
 header['HISTORY'] = 'Bias subtracted'
 fits.writeto(datafilesout[i],dataout,header)
 # Move the no longer needed overscan subtracted files to the archive directory
 basename=os.path.basename(datafilesin[i])
 os.rename(datafilesin[i],archivedir+basename)

In [10]: # Bias subtracting the twilight flat files

Make list of input twilight flat field files
datafilesin = glob.glob(f4)

_bs stands for bias subtracted in the output file names
datafilesout = [i[:-5]+ '_bs.fits' for i in datafilesin]

n = len(datafilesin)
for i in range(0,n):
 data,header = fits.getdata(datafilesin[i],header=True)
 dataout = data - medianBias
 header['HISTORY'] = 'Bias subtracted'
 fits.writeto(datafilesout[i],dataout,header)
 # Move the no longer needed overscan subtracted files to the archive directory
 basename=os.path.basename(datafilesin[i])
 os.rename(datafilesin[i],archivedir+basename)

In [11]: # This assumes that the B, V, R, and I filters were used. If different filters were used,
code below accordingly

If you are using dome flat fields, rather than twilight flats, you'll need to change the
source the right directory of files and check the header OBJECT accordingly.

b_flist = []
v_flist = []
r_flist = []
i_flist = []

Make list of all the flat field files in the twilight flat field directory
flatlist = glob.glob(f4)

Sort files into lists based on the filter used
for ifile in flatlist:
 hdr = fits.getheader(ifile)
 if 'twi' in hdr['OBJECT'].lower():
 filt = hdr['FILTNAM']
 if filt == 'B':
 b_flist.append(ifile)
 if filt == 'V':
 v_flist.append(ifile)
 if filt == 'R':
 r_flist.append(ifile)
 if filt == 'I':
 i_flist.append(ifile)

In [12]: # Create the Master B Flat
bflat_stack = []

Read in each file and normalize by the median
for file in b_flist:
 data,header = fits.getdata(file,header=True)
 data = data / np.median(data)
 bflat_stack.append(data)
 # Move the no longer needed files to archivedir
 # Move the now no longer needed files to archivedir
 basename=os.path.basename(file)
 os.rename(file,archivedir+basename)

Median combine the flat fields, then normalize by the mean
bflat = np.median(bflat_stack,axis=0)
m = np.mean(bflat)
bflat = bflat/m
header['HISTORY'] = 'Combined and normalized flat field'
fits.writeto(source_dir + 'bflat.fits',bflat,header,overwrite=True)

In [13]: # Create the Master V Flat
vflat_stack = []

Read in each file and normalize by the median
for file in v_flist:
 data,header = fits.getdata(file,header=True)
 data = data / np.median(data)
 vflat_stack.append(data)
 # Move the no longer needed files to archivedir
 basename=os.path.basename(file)
 os.rename(file,archivedir+basename)

Median combine the flat fields, then normalize by the mean
vflat = np.median(vflat_stack,axis=0)
m = np.mean(vflat)
vflat = vflat/m
header['HISTORY'] = 'Combined and normalized flat field'
fits.writeto(source_dir + 'vflat.fits',vflat,header)

In [14]: # Create the Master R Flat
rflat_stack = []

Read in each file and normalize by the median
for file in r_flist:
 data,header = fits.getdata(file,header=True)

Check Normalized Flat Field Frames
It is wise to check the normalized flat field frames using DS9 or similar tool. Most pixel values should be

very close to 1.0. A typical B-band normalized flat field is shown as an example.

 data = data / np.median(data)
 rflat_stack.append(data)
 # Move the no longer needed files to archivedir
 basename=os.path.basename(file)
 os.rename(file,archivedir+basename)

Median combine the flat fields, then normalize by the mean
rflat = np.median(rflat_stack,axis=0)
m = np.mean(rflat)
rflat = rflat/m
header['HISTORY'] = 'Combined and normalized flat field'
fits.writeto(source_dir + 'rflat.fits',rflat,header)

In [15]: # Create the Master I Flat
iflat_stack = []

Read in each file and normalize by the median
for file in i_flist:
 data,header = fits.getdata(file,header=True)
 data = data / np.median(data)
 iflat_stack.append(data)
 # Move the no longer needed files to archivedir
 basename=os.path.basename(file)
 os.rename(file,archivedir+basename)

Median combine the flat fields, then normalize by the mean
iflat = np.median(iflat_stack,axis=0)
m = np.mean(iflat)
iflat = iflat/m
header['HISTORY'] = 'Combined and normalized flat field'
fits.writeto(source_dir + 'iflat.fits',iflat,header)

Flat Field Data Frames
Flat fielding data is an essential step in the data reduction to calibrate the relative sensitivies of each pixel.

First the data files will be sorted based on their filters, then each frame divided by the appropriate filter

normalized flat field file.

In [16]: # Create lists of data files for each filter. Filter names should match the filter names u
Field lists of files. Again, we are assuming B, V, R, and I filters were used.

b_flist = []
v_flist = []
r_flist = []
i_flist = []

Make list of all bias subracted data files
data_flist = glob.glob(f2)

Sort data files by filter
for ifile in data_flist:
 hdr = fits.getheader(ifile)
 filt = hdr['FILTNAM']
 if filt == 'B':
 b_flist.append(ifile)
 if filt == 'V':
 v_flist.append(ifile)
 if filt == 'R':
 r_flist.append(ifile)
 if filt == 'I':
 i_flist.append(ifile)

In [17]: # Flat Field the B data files

_ff stand for flat fielded for the output file name
bdataout = [i[:-5]+ '_ff.fits' for i in b_flist]

For each file in list, divide by the normalize flat field frame for that filter
n=len(b_flist)
for i in range(0,n):
 data,header = fits.getdata(b_flist[i],header=True)
 dataout = data / bflat
 header['HISTORY'] = 'Flat Fielded'
 fits.writeto(bdataout[i],dataout,header)
 # Move bias subtracted images to archivedir now that they are no longer needed
 basename=os.path.basename(b_flist[i])
 os.rename(b_flist[i],archivedir+basename)

In [18]: # Flat Field the V data files

_ff stand for flat fielded for the output file name
vdataout = [i[:-5]+ '_ff.fits' for i in v_flist]

For each file in list, divide by the normalize flat field frame for that filter
n=len(v_flist)
for i in range(0,n):
 data,header = fits.getdata(v_flist[i],header=True)
 dataout = data / vflat
 header['HISTORY'] = 'Flat Fielded'
 fits.writeto(vdataout[i],dataout,header)
 # Move bias subtracted images to archivedir now that they are no longer needed
 basename=os.path.basename(v_flist[i])
 os.rename(v_flist[i],archivedir+basename)

In [19]: # Flat Field the R data files

_ff stand for flat fielded for the output file name
rdataout = [i[:-5]+ '_ff.fits' for i in r_flist]

For each file in list, divide by the normalize flat field frame for that filter
n=len(r_flist)
for i in range(0,n):
 data,header = fits.getdata(r_flist[i],header=True)
 dataout = data / rflat
 header['HISTORY'] = 'Flat Fielded'
 fits.writeto(rdataout[i],dataout,header)
 # Move bias subtracted images to archivedir now that they are no longer needed

Examine Flat Fielded Images
It is highly recommended to examine all the images after flat fielding to be sure that the flat field correction

has been done propertly. The image below shows a properly flat fielded image.

 basename=os.path.basename(r_flist[i])
 os.rename(r_flist[i],archivedir+basename)

In [20]: # Flat Field the I data files

_ff stand for flat fielded for the output file name
idataout = [i[:-5]+ '_ff.fits' for i in i_flist]

For each file in list, divide by the normalize flat field frame for that filter
n=len(i_flist)
for i in range(0,n):
 data,header = fits.getdata(i_flist[i],header=True)
 dataout = data / iflat
 header['HISTORY'] = 'Flat Fielded'
 fits.writeto(idataout[i],dataout,header)
 # Move bias subtracted images to archivedir now that they are no longer needed
 basename=os.path.basename(i_flist[i])
 os.rename(i_flist[i],archivedir+basename)

Fix Known Bad Columns in Nickel CCD2 Images
The Nickel CCD2 detector has a number of known bad columns (easily seen in the flat fielded image

above). These columns can be "fixed" by replacing them with the mean values of neighboring columns.

First a bad pixel pixel mask is made highlighting the known bad columns. Then for each bad pixel, the mean

of the surrounding good pixels is calculated and replaces the bad pixel. This procedure is somewhat time

consuming, so be patient while it runs. Do not be alarmed if it gives a warning about converting mask

elements to nan, as it still works correctly.

In [21]: # Procedure to fix known bad columns in CCD2 images. 2016 Oct 2 E. Gates

Create list of flat fielded data
datain = glob.glob(f2)

<ipython-input-21-a95d2eef1783>:30: UserWarning: Warning: converting a masked element to n
an.
 if np.math.isnan(mdata[i,j]):

Examine Bad Pixel Corrected Images
As always, it is good to check the pixel corrected images using DS9 or other image display tool. You can

see in the image below that the bad columns were fixed reasonably well.

_bp in output file name stands for bad pixel corrected
dataout = [i[:-5]+ '_bp.fits' for i in datain]

n=len(datain)
size of box for area around bad pixel to be averaged
s=2

read in one image to get image size for bad pixel mask
data,header=fits.getdata(datain[0],header=True)

make bad pixel mask
mask=np.ma.make_mask(data,copy=True,shrink=True,dtype=np.bool)
mask[:,:]=False
mask[:,255:257]=True
mask[:,783:785]=True
mask[:,1001:1003]=True

loop for all the data bad pixel correction
for k in range(0,n):
 data,header=fits.getdata(datain[k],header=True)
 mdata=np.ma.masked_array(data,mask=mask,fill_value=np.nan)
 dataFixed=data.copy()
 for i in range(0,mdata.shape[0]):
 for j in range(0,mdata.shape[1]):
 if np.math.isnan(mdata[i,j]):
 x1=i-s
 x2=i+s+1
 y1=j-s
 y2=j+s+1
 if x1<0:
 x1=0
 if x2>mdata.shape[0]:
 x2=mdata.shape[0]
 if y1<0:
 y1=0
 if y2>mdata.shape[1]:
 y2=mdata.shape[1]
 dataFixed[i,j]=np.mean(mdata[x1:x2,y1:y2])
 header['HISTORY']='Bad columns replaced'
 fits.writeto(dataout[k],dataFixed,header)
 # Move the now no longer needed files to archivedir
 basename=os.path.basename(datain[k])
 os.rename(datain[k],archivedir+basename)

Cosmic Ray Removal
While the data probably look very good at this point, there are likely many cosmic rays contaminating the

data. Removing all cosmic rays with software is difficult, but there are scripts that do a pretty good job. In

this case we'll use the python module astroscrappy to do cosmic ray rejection. If you don't have

astroscrappy installed, you'll want to install it using pip:

pip install astroscrappy

Note, it is not unusual to have to hand remove cosmic rays that are contaminating key pixels for data

analysis, but that won't be covered in this jupyter notebook.

In [22]: import astroscrappy

Inspect Final Images
We have reached the end of the basic data reduction procedure where we have performed overscan

subtraction, bias subtraction, flat field correction, removed the bad pixels in the CCD, and replaced cosmic

ray hits. The saved final images can now be analyzed for whatever science goal is desired, e.g. astrometry

or photometry.

Additional Python Resources and Tutorials
Python4Astronomers

http://python4astronomers.github.io/intro/intro.html

AstroPython Tutorials

http://www.astropython.org/tutorials/

astropy Tutorials

http://www.astropy.org/astropy-tutorials/

Python for Astronomers

http://www.iac.es/sieinvens/siepedia/pmwiki.php?n=HOWTOs.EmpezandoPython

Making Three Color Images with DS9
Now that you have the data reduced, you can make a pretty three color image. Basic usage of DS9 RGB

frames is described in the following video.

https://www.youtube.com/watch?v=G77RcsAfMGM

Making Three Color Images with GIMP
Basic tutorial to make a three color images with GIMP.

https://www.youtube.com/watch?v=56-ZaZbA3S0

Make a list of all the reduced data files
obs_list = glob.glob(f2)
dataout = [i[:-5]+ '_crj.fits' for i in obs_list]
n=len(obs_list)
for i in range(0,n):
 data,header=fits.getdata(obs_list[i],header=True)
 data_fixed = data.copy()
 mask = np.ma.make_mask(data,copy=True,shrink=True, dtype=np.bool)
 mask[:,:] = False
 crmask,dataCR = astroscrappy.detect_cosmics(data_fixed,inmask=mask,cleantype='medmask'
 header['HISTORY'] = 'CR and bad pixels fixed with astroscrappy'
 fits.writeto(dataout[i],dataCR,header)
 # Move the now no longer needed files to archivedir
 basename=os.path.basename(obs_list[i])
 os.rename(obs_list[i],archivedir+basename)

http://python4astronomers.github.io/intro/intro.html
http://www.astropython.org/tutorials/
http://www.astropy.org/astropy-tutorials/
http://www.iac.es/sieinvens/siepedia/pmwiki.php?n=HOWTOs.EmpezandoPython
https://www.youtube.com/watch?v=G77RcsAfMGM
https://www.youtube.com/watch?v=56-ZaZbA3S0

Analyzing Data
Imexam is a convient tool based on IRAF IMEXAMINE. One can do aperture photometry, radial profile plots,

FWHM measurements, etc. with this tool. Instructions for installation and use are available on-line at

https://imexam.readthedocs.io/en/0.9.1/

Other photometry tools are part of the photutils python package (in fact some of the imexam procedures

require photoutils). https://photutils.readthedocs.io/en/stable/

https://imexam.readthedocs.io/en/0.9.1/
https://photutils.readthedocs.io/en/stable/

