
TRAFFIC CONTROLLER
User’s Guide

Part 1
UCO/Lick Technical Report 55

R. J. Stover

April 6, 1990

1 Introduction

Traffic is a simple program developed for the Lick and Keck optical instru-
ment data acquisition systems. Traffic is the central inter-process commu-
nications hub of the MUSIC system, as described in the MUSIC System
Coordination Overview (Part I of UCO/Lick Technical Report 54). Traffic
provides a centralized process to coordinate the routing and distribution of
messages between the various MUSIC data acquisition processes. Typically
each data acquisition process opens up a single channel of communication (a
Unix socket) to traffic and this single channel is used for all communications
with other processes.

In addition to simple message routing, traffic provides message broadcast-
ing in which a single message is replicated and sent to a number of clients.
This is an important function in the MUSIC system in which multiple user
interfaces may all wish to receive the same update information.

Messages are sent between processes in the standard MUSIC message
format. The descriptions given in this document assume the reader is familiar
with this format and the typical means for sending and receiving such mes-
sages. See the MUSIC System Messages document (Part II of UCO/Lick

1



Technical Report 54) for a complete description. To review briefly, the sim-
plest message can be sent with the following two function calls.

mstart(to,from,msgnumber);

msend(socket);

The first function, mstart, builds a simple message and the second func-
tion, msend, transmits the message. The to, and from parameters are mes-
sage addresses, msgnumber is a message number, and socket is the socket to
traffic.

The remainder of this document describes the use of traffic. Processes
which use traffic will be referred to as clients. Section 2 describes com-
munications with traffic itself. Section 3 briefly describes some C routines
developed for handling the communications with traffic. Section 4 describes
some details of sending messages through traffic to other processes.

2 Communicating with Traffic

2.1 Setting Up the Traffic Socket

When traffic starts up it uses the C routine read_remote to look in a config-
uration file (dtakeservice on the Lick system) for the name ‘trafficport’ from
which it obtains the TCP/IP Internet port number. The value of ‘traffic-
port’ must be consistent among the dtakeservice files for all of the machines
in the MUSIC system. Traffic then creates a Unix TCP/IP socket and
listens for connections at the specified port number. Traffic clients can use
read_remote to obtain the port number, can create a Unix socket, and can
connect to the traffic port. The routine startproc, described in Section 3.1,
performs these functions for traffic clients. The routine read_remote was dis-
cussed in the MUSIC System Coordination Overview, Part 1 of UCO/Lick
Technical Report 54. It is also listed in Section 3.3 of this document.

Clients can send messages through traffic to other clients, or they can send
messages directly to traffic. Most clients will do both. Routines which com-
municate with traffic will need to include the C header file music/traffic.h
which symbolically defines all of the message numbers for the messages sent
by clients to traffic or sent by traffic to clients. Table 1 lists all of the traffic
messages involving direct communications with traffic.

2



Table 1: Symbolic Names for Traffic Messages

Client Sends Traffic Responds

SOCK CONNECT R SOCK CONNECT
CONNECT PROC R CONNECT PROC
DESIRED MSGS R DESIRED MSGS
TURN OFF MSGS R TURN OFF MSGS
GOODBYE none
anything else INEXPLICABLE

The file music/traffic.h also defines the symbol TRAFFIC_CONTROLLER
which is the message address to use when sending messages to the traffic
controller. This goes in the to parameter of the mstart function call. The
body of all traffic messages is briefly described in music/traffic.h, and
we will repeat those descriptions here. Elements of the body are either 32-
bit integers or character arrays. In these descriptions, an integer called X is
declared as int X and a character array called C is declared as char C[].
The elements are placed in the body of the message in the order they are
listed in the description. We begin with the description of SOCK_CONNECT.

msg number = SOCK_CONNECT (client sends this to traffic to identify

itself)

msg body = char name[] = Client’s process name

Once a client has established the socket connection to the traffic con-
troller, the client needs to identify itself to traffic using the SOCK_CONNECT
message. This message provides to traffic a name which traffic saves in an
internal table along with the client’s message address which is assigned by
traffic. Later, other clients can ask traffic for the message address correspond-
ing to that name. The name should be a unique string. On the Lick system
this name is usually constructed from the name of the program, the com-
puter host name, and the Unix process ID number. For processes started by
requests to runner, runner generates this unique name and supplies it both
to the process being run and to the requesting process. Other processes, such
as user interfaces which are not started by runner, need to build this unique

3



name themselves. See the Runner User’s Guide, Part 2 of this Technical
Report, for details on runner.

Traffic responds to SOCK_CONNECT by returning the R_SOCK_CONNECT mes-
sage.

msg number = R_SOCK_CONNECT (traffic sends this in response to SOCK_CONNECT)

msg body = int msgaddr = The clients message address if positive

or -1 if some error occurs.

The returned message address should be used in all further messages.
This is the number to put in the from parameter of the mstart function call.
If a -1 is returned by traffic then some problem was encountered by traffic

and an explicit error message will be logged by traffic into the error file. (In
the Lick system the error file is /u/ccd/trafficlog. In the Keck system
the error file name is TBD.)

2.2 Getting Message Numbers

Once a client has successfully completed the SOCK_CONNECT transaction it has
its own message address. To send messages to another client it must obtain
the message address of that client. It can do this by sending a CONNECT_PROC
message to traffic.

msg number = CONNECT_PROC (client sends this to traffic to request

another process’s message address)

msg body = char name[] = Name of the process for which the

message address is being requested

The body of the message must contain the (null terminated) process name
of the process for which the message address is requested. Obviously, to use
CONNECT_PROC a client must know the process names of other clients. Exactly
how the names become known to other processes is up to the programmer,
but one way is described in the document MUSIC System Coordination
Overview (Part I of UCO/Lick Technical Report 54) and uses the runner
process. The runner process is described in the Runner User’s Guide,
Part 2 of this Technical Report. Another less general method is available
for obtaining message addresses which does not require the knowledge of a
process’s name but instead depends on the traffic broadcast mechanism. See

4



Section 4.4 of the Infoman User’s Guide (UCO/Lick Technical Report 56)
for a detailed example.

When traffic receives the CONNECT_PROC message it searches its table of
names supplied by previous SOCK_CONNECT messages and, if it finds a match,
it returns the corresponding message address in an R_CONNECT_PROC message.

msg number = R_CONNECT_PROC (traffic sends this in response to CONNECT_PROC)

msg body = char name[] = Process name given in CONNECT_PROC

int msgaddr = The requested message address or -1

if an error occurs.

If the returned message address is -1 then traffic failed to find a matching
name, and a message will have been logged in the traffic error log file. The
C routine connectproc, described in Section 3.2, has been developed to
handle all of the message I/O needed to complete a series of CONNECT_PROC
transactions for a list of process names.

2.3 Broadcast Messages

When traffic receives a message it examines the destination address in the
header of the message and uses this address to look up the Unix socket onto
which it is to forward the message. However, when the destination address
is -1 (also symbolically defined as BROADCAST in music/traffic.h) traffic

treats the message as a broadcast type message. It then uses the message
number to look up a table of Unix socket numbers, and it writes a copy of
the message to each of those sockets. Using this mechanism a client can have
a single message broadcast to a group of clients, and the sending client does
not even have to know which clients receive the message. Clients can put
themselves on the lists to receive particular broadcast messages by sending
the DESIRED_MSGS message to traffic.

msg number = DESIRED_MSGS (client sends this to traffic to request

certain broadcast messages)

msg body = int msgnum1 = First message number

int msgnum2 = Next message number

...

int end = Any negative value (-1 is nice) to

mark the end of the list.

5



The body of the message is a list of message numbers for which the client
would like to receive any messages sent in broadcast mode. For each message
number in the list, traffic creates an entry in that message number’s broadcast
table to hold the client’s socket number. To make the broadcast mechanism
as fast as possible traffic defines another fixed size pointer-table which is
indexed by message number and whose elements point to the associated
tables of broadcast socket numbers. Since this pointer-table is of fixed size,
message numbers used in broadcast mode can be no larger than the size of
this table and must be between 0 an 899.

After processing the list of DESIRED_MSGS message numbers, traffic will
return an R DESIRED MSGS message.

msg number = R_DESIRED_MSGS (traffic sends this in response to DESIRED_MSGS)

msg body = int retcode = 0 means OK; -1 means some error.

The retcode element will be 0 unless one of the requested message num-
bers is outside the legal range. Check the traffic error log file for a specific
error message.

Having sent a DESIRED_MSGS message, a client may later wish to remove
itself from the distribution lists of some or all broadcast message numbers.
To do so it can send the TURN_OFF_MSGS message.

msg number = TURN_OFF_MSGS (client sends this to traffic to cancel

certain broadcast messages)

msg body = int msgnum1 = First message number

int msgnum2 = Next message number

...

int end = Any negative value (-1 is nice) to

mark the end of the list.

Like the DESIRED_MSGS message, the body contains a list of message
numbers for which broadcast type messages are no longer desired. The
list of message numbers does not have to match exactly the list of a previ-
ous DESIRED_MSGS message, but it should include only message numbers for
which broadcast messages have been requested. In response to the TURN_OFF_MSGS
message, traffic will return the R_TURN_OFF_MSGS message.

msg number = R_TURN_OFF_MSGS (traffic sends this in response to

6



TURN_OFF_MSGS)

msg body = int retcode = 0 means OK; -1 means some error.

The element retcode will be -1, indicating an error, if any of the TURN_OFF_MSGS
message numbers are outside the legal range for broadcast messages (0 to
899).

2.4 Terminating the Socket Connection

When a client has finished its work it can send a final message, GOODBYE,
to traffic. When traffic receives this message it removes the client from
the process name table and it removes the client’s socket number from all
broadcast tables. It then closes the client socket; no response message is sent.

msg number = GOODBYE (client sends this to traffic to terminate connection)

msg body = no body

If a client process terminates without sending the GOODBYEmessage, traffic
will immediately detect the closed socket and it will perform the same clean-
up operations as if it had received the GOODBYE message.

2.5 Unrecognized Messages

If traffic receives any message it does not recognize (i.e. not in Table 1) then
traffic will return the INEXPLICABLE message.

msg number = INEXPLICABLE (traffic sends this in response to an

unrecognized message)

msg body = struct msg_head head = Header of unrecognized message

The body of the message contains the header of the unrecognized message.

3 C Routines

The routines described here have been developed for the Lick MUSIC sys-
tem. These routines, or modifications of them, may be applicable to the
Keck system as well. These routines are available from UCO/Lick on an
as-is basis.

7



3.1 Routine startproc

A client calls startproc to make the network connection to traffic. In fact, if
a connection to traffic on the local host is being made, startproc will start
the traffic process if it is not already running. In the Lick system we run the
traffic process like a standard Unix daemon, so it is always up and running
and the automatic startup feature of startproc is not used. The following
shows the function calling sequence and briefly describes the parameters to
the call.

startproc(procname,hostname,sock,msgaddr)

input char *procname = Our process name

input char *hostname = Host on which traffic process should be found

output int *sock = Socket to traffic process

output int *msgaddr = Our message address

function return = 0 if successfull and <0 otherwise

The startproc function performs the operations discussed in section 2.1.
It sets up the TCP/IP socket to traffic on the host given by the function
parameter hostname, it sends the SOCK_CONNECT message using procname
as the process name, and it waits for the R_SOCK_CONNECT reply. If any of
these steps fail the function value will be a negative value and a specific error
message will be logged with a call to the function flogerror. If all steps
succeed the socket to traffic is stored at the address given by sock and the
client’s message address is stored at the address given by msgaddr.

3.2 Routine connectproc

A traffic client makes a call to connectproc to obtain the message address of
other traffic clients. The following shows the function calling sequence and
briefly describes the parameters to the call.

connectproc(sock,msgaddr,pnum,proclist,adlist,waitfunc)

input int sock = Socket to traffic process

input int msgaddr = Our message address

input int pnum = Number of strings in proclist

input char *proclist[] = List of process names

output int adlist[] = List of message address/status

8



input int (*waitfunc)()= Address of routine to call with

extraneous messages

As described in Section 2.2 of this document, for each of the processes
listed in proclist this function sends a CONNECT_PROC message to traffic

and waits for an R_CONNECT_PROC message. The message address returned
in each R_CONNECT_PROC message is stored in the corresponding element of
the array adlist.

Since there is a single connection to traffic through which all messages
pass, it is possible that traffic may relay additional messages from other
clients while connectproc is waiting for an R_CONNECT_PROC message. If
such an extraneous (to connectproc) message arrives the function waitfunc
is called with the message number as the single integer function parameter.
This function is expected to deal in some way with the extraneous message.
Perhaps the simplest function to use here is add_msgque which was described
in the MUSIC System Message document, Part 2 of UCO/Lick Technical
Report 54. add_msgque simply saves the message on a queue, from which it
can be retrieved and dealt with later.

3.3 Other Routines

We list here, without much detail, a few additional C routines which are used
internally by traffic or the routines described above.

3.3.1 Routine read remote

The routine read_remote is called by traffic, its clients, and most other pro-
cesses in the MUSIC system to read basic network configuration data from
a configuration file. The routine read_remote was discussed in the MUSIC

System Coordination Overview, Part 1 of UCO/Lick Technical Report 54.

3.3.2 Routine waitfor

The routine waitfor is used in connectproc and in many other MUSIC

system routines. It permits a process to wait for a particular message from
another process while still handling messages which may arrive in advance.
In addition, a timeout period can be specified so that the wait for a particular
message can be terminated if the expected message does not arrive.

9



3.3.3 Routine flogerror

The routine flogerror is just like the C printf function in that it takes a
variable number of parameters, the first of which is a format string. A mes-
sage is constructed using the format string and the resulting message is writ-
ten to an error log file. the default name of the log file is /u/ccd/errorlog,
but this can be changed by the client process. This is the standard error
logging routine for the Lick MUSIC system. For the Keck system it may
be desirable to enhance flogerror to have it transmit the errror message to
some central network error logging process.

4 Sending Messages Through Traffic

4.1 Broadcast Messages

Messages which have a destination message address not equal to TRAFFIC_CONTROLLER
are messages which are to be relayed by traffic from one client to another. If
the destination address is equal to BROADCAST then the message number is
used to determine the client sockets onto which the message is to be copied.
If traffic determines that no clients wish to receive the broadcast message,
then it will return a message to the original sender.

msg number = NO_INTEREST (traffic sends this in response to a

broadcast message no one wants)

msg body = struct msg_head head = Header of unwanted message

The body of the NO_INTEREST message contains the header of the original
broadcast message. Any process which transmits broadcast messages should
be prepared to receive this message since the reception of broadcast type
messages is under the control of the receivers of the message, not the sender.
What is done with the NO_INTEREST message once it is received is up to the
client process. It could be ignored or it could be used as the trigger to stop
further broadcast messages of the type returned.

4.2 Regular Messages

If the destination address is neither TRAFFIC_CONTROLLER nor BROADCAST
then the message is a simple message directed from one client to another. In

10



this case the destination address specifies the socket onto which the message
is to be relayed. Traffic checks to make sure the destination address references
a valid socket. If it does not then traffic can not relay the message and instead
it returns an error message to the original sender.

msg number = NO_DELIVERY (traffic sends this if a message can’t be

forwarded)

msg body = struct msg_head head = Header of original message

All clients should be prepared to receive the NO_DELIVERY message. This
message can occur for two reasons. The first is simple programming error
resulting in the use of an incorrect address. The second reason is that the
intended receiving client has closed its socket to traffic.

5 Things To Do

Except for the NO_DELIVERY message described in the previous section, there
is no way for one client to learn that another client has closed its socket
to traffic. This means that the sender of a message has no way to know of
the intended recepient’s termination until after the message is sent. There
needs to be an additional message which a client can send to traffic which tells
traffic to send a termination message as soon as a particular client terminates
either by closing its socket or by sending the GOODBYE message.

It might be nice if more explicit error codes were returned by traffic.

11



RUNNER
User’s Guide

Part 2
UCO/Lick Technical Report 55

R. J. Stover

April 6, 1990

1 Introduction

Runner is one of the system coordination processes developed for the Lick
and Keck optical instrument data acquisition systems. The runner process
performs two primary functions, process start-up and process shutdown. It
also provides an important secondary function by generating unique process
names which are used later to make connections through the traffic controller
(see Section 2 of the Traffic Controller User’s Guide, Part 1 of this Technical
Report).

When an observer starts up a user interface it establishes a TCP/IP
connection to the runner process on whatever machines it wishes to start
processes. It then sends requests to the runner process(es) to start up the
other parts of the MUSIC system as are appropriate. For each request to
start a process, the user interface will receive a response indicating whether
or not runner could successfully start the requested process. In the case of
a success response runner also sends a unique name to be used in making
connections through the traffic controller, and it adds the new process to its
internal list of currently running processes. The unique name is also passed as
one of the program arguments to the process being started so it can identify
itself to the traffic controller with the appropriate name.

1



If there were only one user interface the actions performed by runner could
more simply be carried out directly by the user interface. The real advantages
of the runner process are realized when multiple user interfaces are in use.
When the second and subsequent user interfaces are started up they too make
a connection to the runner process and they make the same requests as did
the first user interface. But this time runner finds the requested processes
in its list of currently running processes. So instead of starting up another
copy it just returns a success message to the user interface for each requested
process, and it records that another user interface has requested that process.
As a result any number of user interfaces can be started in any order and as
far as the user interfaces are concerned, they have all started up the MUSIC

system in the same way.
As an observer closes down their own user interface the runner process

detects the lost TCP/IP connection which the interface had originally estab-
lished. In response to this lost connection runner will delete the record of
that user interface from the list maintained for each requested process. When
the last user interface is deleted from the list for a particular process, runner
will send that process a Unix SIGTERM signal to terminate the process.
Because of the way runner starts and stops processes, the entire MUSIC

system is brought up when the first user interface is run and it remains up
until the last user interface terminates.

The remainder of this document describes the use of runner. Section 2
describes communication with runner. Section 3 describes how runner starts
new processes. Section 4 describes a C routine for running processes via
runner.

2 Communicating with Runner

2.1 Setting Up the Runner Socket

Runner is typically started as a Unix daemon, and is therefore always up and
running, waiting for new TCP/IP network connections. When runner starts
up it uses the C routine read_remote to consult the dtakeservice file for the
name ‘runnerport’ from which it obtains its TCP/IP port number. The value
of ‘runnerport’ must be consistent between all of the dtakeservice files on all of
the machines in theMUSIC system. (See theMUSIC System Coordination
Overview document, Part 1 of UCO/Lick Technical Report 54, for a further

2



description of read_remote and the file dtakeservice.) Runner then creates
a Unix TCP/IP socket and listens for new connections at the specified port
number. Runner clients can use read_remote to obtain the port number, can
create a Unix socket, and can connect to the runner port. These functions
are performed for the client using the runproc routine described in Section
4.

Runner uses the standard MUSIC message format to both send and re-
ceive messages from client processes. This document assumes the reader is
familiar with this format and the various routines available for sending and
receiving such messages. Read the MUSIC System Message document, Part
2 of UCO/Lick Technical Report 54, for a complete description. Since mes-
sages to or from runner do not go through the traffic controller the message
address portion of the message header is unused in this application.

In the Lick system, runner uses the C routine flogerror to log errors
and other activity in the log file /u/ccd/runnerlog.

2.2 Starting a Process

Once the socket to runner is established the client can send runner requests
to start up processes. To start a process it sends the START_PROC message.
This message number is symbolically defined in the C header file runner.h.
The body of all runner messages is briefly described in runner.h, and we
will repeat those descriptions here. Elements of the message body are either
32-bit integers or character arrays. In these descriptions, an integer called X
is declared as int X and a character array called C is declared as char C[].
The elements are placed in the body of the message in the order they are
listed in the description.

msg number = START_PROC (a client sends this to runner)

msg body = char progname[] = The name of a program for runner

to execute.

The body of the message contains the null-terminated name of the program to
run. If this name begins with the virgule (/) then runner assumes the name is an
actual pathname of the executable file containing the program. If the name does
not begin with the virgule then runner assumes the name is a logical name for the
desired program and it uses the logical name to look up the full pathname in the
dtakeservice file. If the resulting file name appears to be executable and runner

3



is not already executing the program then runner performs a Unix fork and the
forked copy performs a Unix execl to run the requested program. If it is already
running, runner simply returns a success status with the unique process name for
the already-executing process.

For every START_PROC message received, runner sends back an R_START_PROC

message which provides a completion status code and text message.

msg number = R_START_PROC (runner sends this in response to START_PROC)

msg body = int replycode = A code number to indicate the result

of the START_PROC command.

int textlen = The length of the following message.

char textmsg[] = A text message describing the result

of the START_PROC command.

The element replycode is one of the codes defined in runner.h and listed
in Table 1. The textmsg portion of the body is similar to the text given under
the ‘Meaning’ column of Table 1 in all of the failure cases. If the replycode is
START_PROC_SUCCESS then the textmsg element contains the unique process name
of the executed process. The client should use this name as the process name in
the CONNECT_PROC message to traffic. (See the Traffic Controller User’s Guide,
Part 1 of this Technical Report).

Table 1: Symbolic Names for Runner Status Codes
Symbolic name Meaning

START_PROC_SUCCESS Success (Requested process execl’ed)
START_PROC_FAIL1 Logical translation failed
START_PROC_FAIL2 Can’t determine if file is executable
START_PROC_FAIL3 File is not executable

The ...FAIL1 status is returned if runner tries to look up the program path
name in the dtakeservice file but does not find it. Runner uses the Unix stat

function to determine whether or not the requested program is executable. If the
stat function fails (usually because the requested program does not exist) then
runner returns the ...FAIL2 status. If the stat function succeeds but the data
returned by stat indicates that the file is not executable then runner returns the
...FAIL3 status.

4



3 How Processes are Run

The processes started by runner execute on the runner host machine. However,
the client and runner processes do not have to be executing on the same computer.
It is therefore possible for a single client to start up processes on several different
computers. There simply has to be runner processes on the appropriate machines.
This is, in fact, the situation in the Lick MUSIC system in which there is an
observer’s computer and a CCD controller computer.

When runner executes a program it passes two arguments on the processes
argv[] list. The first is the last component of the path name of the program’s
executable file. This is standard Unix practice. The second argument is the
same unique process name returned to the requesting client in the R_START_PROC
message. The executed process should use this name as its process name when it
sends the SOCK_CONNECT message to traffic.

Before runner calls the execl function to run the new program it closes all
open Unix file descriptors.

4 The runproc Routine

The C routine runproc has been developed for the Lick MUSIC system. It is used
to request a runner to run a specified process for the client. A table of already-
connected runner daemons is maintained by runproc so that a single network
connection is made to any one runner.

int runproc(section,host,process,tname,tnamesize)

input char *section = Dtakeservice file section name

input char *host = Name of host to run the process on

input char *process = Name of process to run

output char tname[] = Array containing unique process name

(or error message if return < 0)

input int tnamesize = Size of the tname array

The return function value will be one of the values given in Table 2. If the
function return value is positive then the function call was successful and the
tname character array contains the unique process name of the newly run process.
If runproc makes a new socket connection to runner then the positive return value
will be the Unix descriptor for that socket. If runproc already finds it has a socket
connection open to the necessary runner the positive return value will have 1000
added to the socket number.

5



Table 2: Function Return Values For runproc
Value Meaning

Positive value: Encoded such that:
< 1000 Socket number to a ‘new’ runner
≥ 1000 Socket number + 1000 to an ‘old’ runner

-1 Could not allocate memory for internal tables
-2 Could not make network connection with runner
-3 Too many hosts connected (50 max)
-4 Got no response from runner
-5 Error writing on runner socket
-6 Runner could not run the requested process

If the function return value is negative then the global character array runproc_err
will contain a descriptive text message. And in the case of error -6 the message
input buffer will contain the runner R_START_PROC message which can provide
additional details on the error.

Given the standard configuration of the dtakeservice file the section param-
eter would normally be “network”. As an example, assume that we wish to run a
program called dtake on a host called sun1. Then our call to runproc might look
like:

ret = runproc("network","sun1","dtake",tname,sizeof(tname));

runproc uses the “network” parameter and the name “runnerport” to look up
the TCP/IP port number for runner. Using this number it establishes a connection
to runner on host “sun1” and sends a START_PROCmessage with the name “dtake”.
Since “dtake” is not a full path name runner will look this name up in its local
copy of the file dtakeservice to find the path name on sun1. The requested program
is then run and the unique process name will be returned in the character array
tname.

5 Things To Do

There needs to be a way for a client to tell runner that it would like to be notified
whenever one of its requested processes terminates. The client would send runner

an additional message requesting this service. Whenever runner detects that one

6



of its executed processes has terminated it would then send a message to each
client which both requested that process and requested the termination notice.
Currently, clients keep their TCP/IP connection to runner open after the initial
START_PROC/R_START_PROC transactions, but do not expect any further messages
to arrive. When the termination notice feature is provided clients will need to be
prepared to look for, and accept, additional messages from runner.

7


